Abstract
Populations of honey bees and other pollinators have declined worldwide in recent years. A variety of stressors have been implicated as potential causes, including agricultural pesticides. Neonicotinoid insecticides, which are widely used and highly toxic to honey bees, have been found in previous analyses of honey bee pollen and comb material. However, the routes of exposure have remained largely undefined. We used LC/MS-MS to analyze samples of honey bees, pollen stored in the hive and several potential exposure routes associated with plantings of neonicotinoid treated maize. Our results demonstrate that bees are exposed to these compounds and several other agricultural pesticides in several ways throughout the foraging period. During spring, extremely high levels of clothianidin and thiamethoxam were found in planter exhaust material produced during the planting of treated maize seed. We also found neonicotinoids in the soil of each field we sampled, including unplanted fields. Plants visited by foraging bees (dandelions) growing near these fields were found to contain neonicotinoids as well. This indicates deposition of neonicotinoids on the flowers, uptake by the root system, or both. Dead bees collected near hive entrances during the spring sampling period were found to contain clothianidin as well, although whether exposure was oral (consuming pollen) or by contact (soil/planter dust) is unclear. We also detected the insecticide clothianidin in pollen collected by bees and stored in the hive. When maize plants in our field reached anthesis, maize pollen from treated seed was found to contain clothianidin and other pesticides; and honey bees in our study readily collected maize pollen. These findings clarify some of the mechanisms by which honey bees may be exposed to agricultural pesticides throughout the growing season. These results have implications for a wide range of large-scale annual cropping systems that utilize neonicotinoid seed treatments.
Some results:
"Results of analyses of these bees and pollen from the hives revealed that both clothianidin and thiamethoxam were present on dead bees and in pollen collected from a single hive. These compounds were also present in dead bees from other hives but not in bees from hives that did not show mortality."
"Our results also demonstrate that clothianidin is present in the surface soil of agricultural fields long after treated seed has been planted in that field. All soil samples we collected contained clothianidin, even in cases where no treated seed had been planted for 2 growing seasons. During the spring planting period, dust that arises from this soil may land on flowers frequented by bees, or possibly on the insects themselves. Of potentially greater concern are the very high levels of neonicotinoids (and fungicides) found in the talc that has been exposed to treated seed, since part of this highly mobile material is exhausted to the outside environment during planting and after planting. The large areas being planted with neonicotinoid treated seeds, combined with the high persistence of these materials and the mobility of disturbed soil and talc dust, carry potential for effects over an area that may exceed the boundaries of the production fields themselves. "
Full paper:
Krupke CH, Hunt GJ, Eitzer BD, Andino G, Given K (2012) Multiple Routes of Pesticide Exposure for Honey Bees Living Near Agricultural Fields. PLoS ONE 7(1): e29268. doi:10.1371/journal.pone.0029268
http://dx.doi.org/10.1371/journal.pone.0029268